2014 Consumer Confidence Report Water System Name: RIVER VIEW MOBILE ESTATES Report Date: 03/02/15 We test the drinking water quality for many constituents as required by State and Federal Regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2014. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: Groundwater Wells Name & location of source(s): South Well and South West New Well at 8200 Jantzen Rd. Modesto, CA Drinking Water Source Assessment information: Performed in 2002 and 2005 - See Last Page For more information, contact: James Cook Phone #: (209) 573-1574 #### TERMS USED IN THIS REPORT: Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. ### Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. NTU: nephelometric turbidity unit pCi/L: picocuries per liter (a measure of radiation) Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | TABLE 1 - SAM | PLING RES | ULTS SHO | WING THE | DETEC | TION O | F COL | IFORM BACTERIA | | |---|--|---|---|---------|------------|------------------------|---|--| | Microbiological
Contaminants | Highest
No. of
Detections | No. of
Months in
Violation | MCL | | MCLG | | Typical Source of Bacteria | | | Total Coliform Bacteria | (In a Mo.) | 0 | More than I sample in a month with a detection | | 0 | Natur | Naturally present in the environment | | | Fecal Coliform or E. coli | (In the
Year) | 0 | A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or E. coli | | 0 | Huma | Human and animal fecal waste | | | TABLE 2 – SA | MPLING RI | ESULTS SH | OWING TH | ie deti | ECTION | OF LI | EAD AND COPPER | | | Lead and Copper
(and reporting units) | No. of
Samples
Collected
(Date) | 90 th
Percentile
Level
Detected | No. Sites
exceeding
AL | AL | PHG | | Typical Source of Contaminant | | | Lead (ppb) | 11
(07/30/14) | < 5 | 0 | 15 | 0.2 | plum
indus
natur | Internal corrosion of household water
plumbing systems; discharges from
industrial manufacturers; erosion of
natural deposits. | | | Copper (ppm) | 11 (07/30/14) | 0.36 | 0 | 1.3 | 0.3 plum | | nal corrosion of household water
abing systems; erosion of natural
sits; leaching from wood
ervatives. | | | TA | ABLE 3 - SA | MPLING R | ESULTS FO | OR SOD | IUM AN |) HAR | EDNESS | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detection | MC | Y P | HG
CLG) | Typical Source of
Contaminant | | | Sodium (ppm) | 02/12/14 | 61 | 56 - 66 | Nor | ıe N | one | Salt present in the water and is generally naturally occurring | | | Hardness (ppm) | 02/12/14 | 304 | 298 - 309 | | - I II- 14 | one | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | AMOY | PHG
(MCLG) | ING WATER STANDARD Typical Source of Contamina | | |---|----------------|-------------------|---------------------|--|---------------|---|--| | Nitrate as NO3 (ppm) | 2014 | 34 | 24 - 45 | 45 | 45 | Runoff and leaching from
fertilizer use; leaching from
septic tanks, sewage; erosion of
natural deposits | | | Gross Alpha (pCi/L) | 2007-2012 | 7 | < 3 - 13 | 15 | N/A | Decay of natural and man-made deposits | | | Uranium (pCi/l) | 2007 | 6 | 2 - 11 | 20 | N/A | Erosion of natural deposits | | | Barium (ppm) | 2014 | 0.3 | 0.3 - 0.3 | 1 | 1 | Discharge of oil drilling wastes and from metal refineries; erosiof natural deposits | | | Arsenic (ppb) | 2014 | <2 | <2-4 | 10 | 0.004 | Erosion of natural deposits;
runoff from orchards; glass and
electronics production wastes | | | Fluoride (ppm) | 2014 | < 0.1 | < 0.1 - 0.1 | 2 | 1 | Erosion of natural deposits; wat
additive which promotes strong
teeth; discharge from fertilizer
and aluminum factories | | | Hexavalent Chromium (ppb) | 2014 | 3 | 2 - 3 | 10 | 0.02 | Discharge from electroplating factories, leather tanneries, woo preservation, chemical synthesis and textile manufacturing facilities; erosion of natural | | | TABLE 5 - DETECTION | OF CON | [AMINAN] | IS WITH A | SECONDA | RY DRINK | UNG WATER STANDARD | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminar | | | Total Dissolved Solids (ppm) | 2014 | 518 | 450 - 601 | 1000 | N/A | Runoff/leaching from natural deposits | | | Specific Conductance (uS) | 02/12/14 | 762 | 750 - 775 | 1600 | N/A | Substances that form ions when in water; seawater influence | | | Chloride (ppm) | 02/12/14 | 60 | 30 - 90 | 500 | N/A | Runoff/leaching from natural deposits; seawater influence | | | Sulfate (ppm) | 02/12/14 | 55 | 40 - 70 | 500 | N/A | Runoff/leaching from natural deposits' industrial wastes | | | TA | ABLE 6 - DI | ETECTION | OF ADDIT | IONAL CO | NTAMINA | NTS | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | MCL
(MRDL) | Health Effects Language | | | | | Distribution System
Chlorine Residual
(ppm) | 2014 | 0.4 - 1.8 | (4) | Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. | | | | | Distribution System Haloacetic Acids (ppb) | 09/09/14 | 2 | 60 | Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. | | | | | Distribution System Total Trihalomethanes (ppb) | 09/09/14 | 3 | 80 | Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience liver, kidney, or central nervous system problems, and may have an increased risk of getting cancer In regarding the violation is provided on the next page. | | | | ## Additional General Information On Drinking Water All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.cpa.gov/safewater/lead. Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. ## Vulnerability Assessment Summary A source water assessment was conducted for the south well and the south west new well of the Pinewood Meadows Mobile Home Park water system in June of 2002 and February of 2005, respectively. The sources are considered most vulnerable to the following activities associated with contaminants detected in the water supply: historic waste dumps/landfills, fertilizer/pesticide/herbicide application, and septic systems - high density. The sources are considered most vulnerable to the following activities not associated with any detected contaminants: agricultural drainage, mining - sand/gravel, recreational area - surface water source, and wells - agricultural/irrigation. A historical landfill is located nearby. The park has high-density, onsite sewage disposal. ## Discussion of Vulnerability Radionuclides have been detected in the water sources. However, the levels of detection have not exceeded the maximum contaminant limit (MCL), in the monitoring history for the sources. Radionuclide contaminants such as gross alpha particle activity occur naturally in the environment. Therefore, their presence may be related to natural occurrences in the environment. However, medical, veterinary offices and military installations are potential sources for radionuclide contamination related to the activities of man. The presence of radionuclides may be due to natural occurrences in the environment. Historical water samples have detected the presence of Dibromochloropropane (DBCP) at the south well. However, detection levels were below the MCL (maximum contaminant limit). This contaminant is typically associated with pesticide use. Historical water samples have detected the presence of Chromium Hexavalent at the south west new well. Recent water quality analyses on file indicate that both sources are currently in compliance with State Standards. Although in compliance, the sources are still considered vulnerable to activities located near the drinking water sources. For more information regarding the assessment summaries, contact: James Cook at: (209) 573-1574. ## ATTACHMENT 7 # Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR) | Wat | er Syst | em Name.: | River | Wiein | Mobile | Home | Estates | | | | |----------------------|---|-----------------|--|-----------------------------|-----------------------------------|------------------------------|---|--|--|--| | Water System Number: | | | 50000 | 10 | | | | | | | | Furt
com | el> 1 .
her, the
pliance | system certif | <i>date)</i> to c
ies that the | ustomers (a
e informatio | ind appropriat
in contained in | e notices of
the report i | dence Report was distributed on
f availability have been given).
s correct and consistent with the
sources Control Board, Division | | | | | Certified by: Name: | | | James | 3 D. C | 20K | | | | | | | | | Signata | ire: | Deno | Cans | | | | | | | | | Title: | | Resid | lent Mo | engoer | | | | | | | | Phone I | Number: | (<u>209</u>) | 573-15 | 74. | Date: 3/25/2015 | | | | | To s
all it | CCR | ա արքույ առայա | u-un waere | appropriai | e: | | complete the below by checking Specify other direct delivery | | | | | | "Good | d faith" effort | s were use | ed to reach | non-bill payi | ng consume | ars. Those efforts included the | | | | | | | Posting the C | CR on the | Internet at | www | re- | | | | | | | | | | | | Publication of | Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published) | | | | | | | | | | Posted the CCR in public places (attach a list of locations) | | | | | | | | | | | | | | nultiple co | pies of CC | R to single-bil | | es serving several persons, such | | | | | | | Delivery to c | ommunity | organizatio | ns (attach a lis | t of organiz | ations) | | | | | | | Other (attach | | | | | | | | | | | For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following address: www | | | | | | | | | | | | For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission | | | | | | | | | | | | | • | | | ıd may be used to m | | | | | | section 64183(c), California Code of Regulations.